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SUMMARY & CONCLUSIONS 
 

In planning a complex system’s development there 
can be many options to improve its reliability. Typically 
their sum total cost exceeds the budget available, so it is 
necessary to select judiciously from among them. 
Reliability models can be employed to calculate the cost 
and reliability implications of a candidate selection. 
However, there will typically be many such candidate 
selections, so we employ heuristic search techniques to 
explore reliability cost-benefit spaces, and visualization 
to present the results of these machine-conducted 
searches back to the expert designers to assist them in 
their decision making. This helps them understand (1) 
the overall cost-benefit trade space (how much 
reliability can be attained for a given level of 
expenditure, and how much additional reliability can be 
had for a modest increase in expenditure), and (2) the 
contribution of individual options (when an individual 
option (e.g., a test) contributes cost-effectively to the 
overall reliability). The net result is that expert human 
designers can make cost and benefit informed decisions 
on attainment of reliability. This approach is 
demonstrated on data drawn from planning the 
developments of advanced technologies for spacecraft. 

 
1.  INTRODUCTION 

 
The context in which we work is the design and 

development of NASA’s deep space probes. High 
reliability is required of these complex systems. 
Furthermore, high reliability is required of the 
development of those systems – that it be accomplished 
within budget, that it be completed within schedule (the 
spacecraft must be ready for launch within a certain 
time period when celestial mechanics allow for a time 
and energy efficient route to destination), and that the 
resulting system adhere to strict resource limitations 
(mass, volume, power, etc). Finally, NASA is 
continually pursuing new scientific objectives,  for 
which new mission concepts are devised (e.g., sample-
return missions), new technologies are developed (e.g., 
autonomous spacecraft control), and existing 
technologies are employed in novel settings (e.g., 
electronics subject to the harsh temperature cycles of 
planetary environments). 

In response to these needs, at JPL and NASA a 
process has been developed to perform life cycle risk 
management [1]. One of the key aims of this process is 
to utilize the experience and insight of spacecraft 
experts drawn from the full range of discipline areas 
(e.g., science, navigation, propulsion, software, 
materials, communications). The complexity of the 
systems involved and the pressures on their 
development render purely manual planning and 
decision making problematic. Our risk management 
process therefore utilizes automation to assist those 
experts in pooling their knowledge, in deriving 
information from their pooled knowledge (via 
automated calculation and search), and in decision-
making based on the sum total of that knowledge. This 
process is not, however, automatic. There is continued 
need for interchange between the experts and the 
automation, so that they can understand the results of 
that automation, and use those results to guide them (not 
replace them) in their decision-making. Visualization 
plays a key role in effective communication of 
information to those expert users. 

The focus of this paper is on the visualization we use 
to convey automated search results, and their 
implications, to expert users. We employ heuristic 
search to help locate cost-effective solutions within a 
(large) space of reliability options. The large search 
space arises from the many options available to attain 
reliability – design options, materials options, test and 
analysis options, etc. At the heart of our process is a 
reliability model we use to calculate, for a given 
selection of options, the cost and benefit of that 
selection. We show how appropriate visualization of the 
search results is able to convey both the overall nature 
of the cost-benefit trade-space, and the contributions of 
individual reliability options. The net result is help to 
the expert users in making cost-benefit informed 
decisions concerning the reliability of the spacecraft 
systems whose development they are planning. 

As we have stated, our work takes place in the 
context of spacecraft development. Nevertheless, we 
feel there are numerous terrestrial applications to which 
the same approach would apply. Many applications 
have high reliability needs and have budget, time and 
resource constraints on their development. The 
reliability model that underpins our work is quite 

 



general in nature (it emphasizes spanning the breadth of 
concerns rather than the intricate details of the systems 
themselves). Moreover, whatever reliability model is 
used our method requires only that it be capable of 
calculating the cost and benefit of a candidate solution. 
Hence we are optimistic that our use of heuristic search 
for cost-effective reliability solutions,. coupled with 
cogent visualization to report the results of that search, 
has broad applicability. 

The remainder of this paper is structured as follows: 
In section 2 we briefly summarize our reliability 

model. In section 3 we discuss the use of heuristic 
search to expose the cost-benefit reliability option space 
for a problem expressed in our reliability model, and 
show the use of visualization to convey the overall 
nature of the space. In section 4 we show how further 
visualization is able to reveal the contribution of 
individual reliability options. Finally, in section 5 we 
discuss status and mention some related work. 

 
2.  RELIABILITY MODEL 

 
In this section we briefly summarize our reliability 

model, and identify the characteristics of the model 
upon which the rest of our approach relies. We have 
published widely on the model – for a relatively 
complete account, the interested reader is referred to 
[2]. 

 
2.1  Summary of Reliability Model and its Applications 
 

Stated in the most general terms possible, the heart 
of our reliability model is very straightforward: for 
whatever system is being modeled, we capture within 
the model (1) the characteristics required of the system 
and of its development, (2) the key obstacles that, were 
they to arise, would impede attainment of those 
characteristics, and (3) the options available for 
preventing, removing or working around those 
obstacles. We also capture within the model quantitative 
values for how much each obstacle (were it to arise) 
would impede attainment of the characteristics, and for 
how much each option (were it chosen) would 
effectively reduce each obstacle. Finally, we capture the 
cost of each option, and the relative value of each 
characteristic. 

When applied to spacecraft development, the 
characteristics required are often termed “objectives” or 
“requirements”, the obstacles are termed “risks” or 
“failure modes”, and the options “mitigations”. Most of 
our applications have been to individual technologies 
intended for use on space missions, for which: (1) the 
objectives encompass the science objectives driving the 
use of the technology (e.g., data accuracy and volume), 
environmental constraints on resources available to the 

technology (e.g., RAM, power), and environmental 
constraints on the extent to which the technology can 
impact its environment (e.g., electromagnetic fields), (2) 
the risks encompass potential development problems 
(inability to construct, test, repair, operate and maintain 
the system) as well as the multitude of ways the 
operating system can fail to meet requirements, and (3) 
the mitigations encompass preventative measures that 
can be employed to reduce the likelihood of risks 
occurring (e.g., coding standards, training, use of 
qualified parts), to detect the presence of risks prior to 
fielding and use of the system (e.g., inspections, 
reviews, analyses, tests), and to alleviate the severity of 
risks (e.g., array bounds checking coupled with 
appropriate responses). 

We have also applied this model to study designs of 
spacecraft apparatus. Currently the model is in use as 
part of the risk management process for an entire 
mission. One of our colleagues has explored the use of 
the model to assist activity selection across an entire 
program of NASA Earth Science Missions [Tralli, 
2003]. We have even explored its use for scrutinizing a 
portolio of research activities aimed at fulfilling the 
needs of practitioners, where the practitioners were 
encoded as the model’s requirements, practitioners’ 
needs as obstacles, and researchers activities as the 
mitigations [4]. 

The diagrams in this paper are computed from actual 
data gathered in the application of our model to 
spacecraft technologies. These applications are perhaps 
the closest to the reliability concerns of this symposium. 
 
2.2  Key Characteristics of Reliability Model 
 

Our use of search and visualization to explore the 
consequences of our reliability model relies on the 
model being “evaluatable”, in the sense that for a given 
selection of mitigations, the model can be automatically 
evaluated to yield a measure of cost and of benefit. 

Costs arise in our model though association with 
mitigations (e.g., the cost of performing a test), and with 
repairs (e.g., the cost of repairing a problem that a test 
reveals). For a given selection of mitigations, our 
software automatically calculates the total of these costs. 

Benefits arise in our model from the extent to which 
the objectives are attained. Individual objectives are 
given numerical weights to reflect their relative 
importance. For a given selection of mitigations, our 
software automatically calculates the total expected 
attainment of those objectives, taking into account the 
likelihood and severity of the risks, calculation of which 
in turn takes into account the effectiveness of the 
selected mitigations at reducing those risks. 

The methods described in the following sections rely 
only on knowledge of the total cost and benefit for a 

 
   



selection of mitigations. Thus any reliability model 
capable of being evaluated to yield these measures 
would fit within our scheme. 

 
3.  USE OF SEARCH AND VISUALIZATION TO 

REVEAL THE OVERALL COST-BENEFIT TRADE 
SPACE 

 
In our technology  applications there can be many 

mitigations (dozens, possibly hundreds). Most of these 
are independent choices, so the combinatorics of 
selecting from among these imply a space containing 
huge numbers of possible candidate solutions. In a 
typical one of our applications, 58 mitigations represent 
design and development choices whose costs range 
from the low thousands of dollars to, in a few cases, 
hundreds of thousands of dollars. Since there are 58 
mitigations, there are in principle 258 (approximately 
1017) different selections from among them. 

Straightforward incremental approaches to selection 
of mitigations are unlikely to lead to optimal solutions. 
For example, what might appear to be a promising-
looking cost-effective mitigation (e.g., one that costs 
relatively little and significantly reduces a major risk) 
need not necessarily be part of an optimal solution. 
There could be another more expensive mitigation that 
reduces both that risk, and some other risk for which 
there are no alternative mitigations. Thus that more 

expensive mitigation may well need to be selected 
anyway, rendering the promising-looking mitigation 

irrelevant. This phenomenon arises even within our 
relatively simple reliability modeling framework, 
because within our models it is typical for a given 
mitigation to reduce several risks (and in turn for a risk 
to threaten several objectives). Our models also 
encompass the phenomenon of mitigations that reduce 
some risks, but make others worse (e.g., a vibration test 
may serve to detect certain kinds of flaws, but also has 
some likelihood of causing flaws; software patches to 
fix one set of bugs can themselves introduce their own 
bugs). These further complicate judicious selection of 
mitigations. We speculate that reliability models that 
include design details such as redundancy, spares, etc., 
can readily introduce even more complexity. 

In response, we use automated heuristic search for 
optimization. This is a widely-accepted approach to 
locating near-optimal solutions to complex design 
problems. For example, see [5] for an overview of this 
kind of work. We have implemented simulated 
annealing (a form of heuristic search), included as part 
of our software, and use it to locate near-optimal 
solutions. We have also explored genetic algorithms, 
and machine learning [6] for this same purpose. Using 
heuristic search we can search for a specific optimum. 
For example, for a given budget, find the set of 
mitigations that maximize the benefit (as calculated by 
our reliability model) while costing (as calculated by 
our reliability model) no more than that budget.  

Figure 1. Visualization of the overall cost-benefit reliability option space 

In order to reveal the overall cost-benefit trade space 
we use a series of individual cost-bounded optimal 

 
   



searches at successive cost levels. The result of such a 
series of searches, as performed on one of our 
technology studies, is shown in Figure 1. The sum total 
cost of all mitigations (approximately $4,750,000) 
determines the rightmost value of the x-axis, and the 
sum total value of all objectives (approximately 3,600) 
determines the topmost value of the y-axis. Each of the 
approximately 300,000 individual points in the black 
“cloud” corresponds to a solution (i.e., selection of 
mitigations). For a given solution, our quantitative 
reliability model was used to calculate cost and benefit. 
A small black point corresponding to the solution was 
then drawn on the plot – solution cost determines 
horizontal position, solution benefit vertical position. 
The upper-left frontier of the cloud is thus the “optimal” 
boundary, also referred to as the “Pareto front” [5]. Note 
that we plotted a point for every solution investigated by 
the search, not just the “near-optimal” solution points on 
the boundary. The simulated annealing search is 
designed to concentrate towards this optimal boundary, 
so in fact there are many sub-optimal solutions not 
explored by this search, and so not plotted (were they to 
be plotted they would fall somewhere within the 
interior). 

Our software automatically performs the heuristic 
search, calculating the cost and benefit for thousands of 
solutions as it progresses, and generates the plot of their 
points on the background of the cost and benefit axes 
seen in Figure 1. This is comprised of some 300,000 
points. Its generation took approximately of 10 hours 
running on a 1.8 GHz PC. The primary determinant of 
the time is the time it takes the implementation of the 
reliability model to evaluate a given solution’s cost and 
benefit values.  

For purposes of exposition, we have manually 
annotated the figure, using several white ellipses to 
highlight regions of interest: 

• Points within the “Sub-optimal interior” indicate 
solutions that are far from optimal; for a given 
such solution, there are less expensive solutions 
that achieve the same level of benefit, and for 
that solution’s cost, there are more effective 
solutions that achieve more benefit. 

• Points within the “Region of diminishing 
return” indicate solutions that, while close to or 
on the near-optimal boundary, achieve very 
little more benefit than less expensive solutions 
to their left. Their selection would be warranted 
only for the most risk-averse, wealthy, 
applications! 

•  Points within the “Sweet spot!” region indicate 
where we would like to be, budget permitting. 

• Points within the “Significant improvement 
possible” region indicate solutions that, while 

close to or on the near-optimal boundary, could 
be significantly improved upon by a small 
increase in cost. If we find that for the budget 
available, solutions fall within this region, then 
there is a strong case to be made for additional 
budget. Asking for more money is common; the 
distinction here is that the justification for doing 
so is clearly evident.  

It is possible that the available budget does not 
permit attainment of the requisite level of benefit. This 
could be because for that budget, solutions fall within 
the “Significant improvement possible” region. It could 
be because all the solutions, even the most expensive 
ones, fail to reach the requisite level of benefit 
(reliability). In response it may be appropriate to 
abandon some of the objectives, leaving a smaller set 
whose attainment can be more effectively achieved. 
While this will not necessarily increase the expected 
level of attainment of benefit, it may nevertheless be 
much preferred for reasons not included with the 
reliability model (e.g., highly negative public reaction to 
mission failure). This exemplifies the kind of strategic 
decision making (e.g., selection of a less ambitious 
mission with more certainty of success) that is informed 
by kind of cost-benefit trade space information we 
yield. That is, we use the power of automated search 
and visualization to convey information that is of value 
to decision makers, rather than striving to make the 
decisions for them. 
 

4.  USE OF VISUALIZATION TO REVEAL THE 
CONTRIBUTION OF INDIVIDUAL OPTIONS 

 
This section shows how the contribution of 

individual options within the overall cost-benefit trade 

space can be revealed through further visualization.  An 
extreme example is shown in Figure 2 for a chosen one 
of the mitigations involved in the same reliability study 
as was plotted in Figure 1. This plots the same points as 
were in Figure 1, but colors each point: 

Figure 2. Visualizing the contribution of an 
individual mitigation 

 
   



• white if the chosen mitigation is included in the 
solution represented by that point, and 

• black otherwise. 
The broad swathe of white points that dominate the 

upper portion of the figure indicate that the chosen 
mitigation is key to nearly all optimal solutions. Only 
for very low cost levels do black points appear on the 
optimal frontier, indicating that the chosen mitigation 
would not be appropriate. We have chosen here a 
mitigation that plays a cost-effective role across almost 
the entire cost range of solutions. In fact, its cost is 
$160,000 (to put this in context, the rightmost extreme 
of the horizontal axis corresponds to approximately 
$4,750,000).  

What appears to be a black “shadow” of the white 
region is, in fact, exactly that! Consider a solution found 
by our heuristic search that involves the chosen 
mitigation; its point will be located appropriately on the 
chart, based on that solution’s calculated cost and 
benefit, and colored white. Our heuristic search method 
will try mutations of solutions, and so is likely to try a 
mutation of this solution in which the chosen mitigation 
is turned off. The resulting solution will be evaluated for 
cost and benefit, and its point located on the chart, 
colored black (since it does not involve the chosen 
mitigation). Compared to the first solution, it will cost 
$160,000 less. so its point will be shifted a small 
distance to the left, and, since the solution contributes 
greatly to the benefit attainment, in its absence the 

benefit attainment will be a lot less, so its point will be 
shifted down. This phenomenon occurs for most of the 
swathe of white points, which we can see are shifted 
slightly to the left and significantly downwards to give 
rise to the black region.  

Figure 4. An expensive mitigation Figure 3. Another mitigation’s visualization 

Figures 3 and 4 show application of this same 
visualization technique to two different mitigations (to 
save space, these figures are half the height and width of 
the earlier figures). The mitigation shown in Figure 3 is 
a little more expensive than the mitigation of Figure 2 
($200,000 rather than $160,000) but from this 
visualization can be seen to be cost-effective (i.e., 
appears along the optimal boundary) only for solutions 
starting at approximately $1,000,000. The mitigation 
shown in Figure 4 is significantly more expensive 
($700,000), and not surprisingly plays a role in optimal 
solutions at only the more expensive end of the 
spectrum (starting at approximately the $3,000,000 
level).  

 Figures 5 and 6 show two more mitigations. From 
their visualizations, it is clear that they are not cost-
effective. The mitigation of Figure 5, even though 
relatively low cost, appears in very few places (there’s a 
hard to discern at this scale small patch of white on the 
optimal frontier around the $1,500,000 level). In fact, 
this is a mitigation that (according to the experts who 
provided the data in the reliability model) reduces some 
risks, but makes some other worse. This visualization 
suggests avoiding its use in this application, in keeping 
with the experts’ intuition, it turns out. Figure 6 shows 

Figure 6. A dubious mitigation. Figure 5. An unworthy mitigation 

 
   



Figure 7. Zoom-in on a mitigation
an instance of  a mitigation of dubious utility. The plot 
has a “speckely” look, because there is a close mixture 
of white and black points, with black points slightly 
dominating. It turns out to be a low cost ($5,000), low 
benefit mitigation. For cases such as these, “zooming 
in” on the optimal frontier can show whether or not the 
mitigation is of net benefit. This is seen in Figure 7, 
where another mitigation of uncertain utility (again, 
with a “speckely” look, albeit slightly more light 
colored overall) is shown alongside a zoom-in to a 
portion of the optimal frontier. From the zoom-in, it can 
be seen that this mitigation does appear almost 
uniformly along the upper portion of the frontier, 
indicating that it has an overall postive (albeit small) 
role to play in near-optimal solutions. 

 
5. STATUS AND RELATED WORK 

 
The benefit of these forms of visualization stem 

from the insights they provide the experts. Cost-
effective design of high-reliability systems requires a 
blend of input, guidance and insight that the human 
experts can provide, and the storage, calculation and 
search capabilities that the software can provide. 
Visualization is key to conveying information from the 
software to those experts. 

The status of our work is that the visualizations 
shown in this paper are generated from our implemented 
software. The capability of visualizing the effect of 
individual mitigations provides additional information 
to assist those experts in their decision-making. In 
particular, it reveals which of the design choices are 
crucial, both choices of options crucial to perform, and 
choices of options crucial to not perform. This indicates 
to the designers the restrictions on their freedom of 
choice if they want to obtain solutions close to the near-
optimal design frontier.   

The overall cost-benefit trade space visualization has 
been utilized to help experts make costing decisions for 
technology developments. 

The capability for visualization of individual options 
was developed and tested on data that had previously 

been gathered in the course of an actual technology 
study performed at JPL – the figures in this paper have 
all been generated from this study’s actual data. It has 
subsequently been used in another technology study. In 
the latter, we performed the experiment of inspecting 
the visualizations of each of the mitigations, and on that 
basis estimating whether (for a chosen cost level) the 
mitigation appeared to be cost-effective or not. We then 
manually selected those and only those mitigations we 
deemed to be cost-effective, and, using our tool to 
evaluate the reliability model on that solution, 
determined where in the cost-benefit trade space that 
solution would fall. The result was a point that was 
indeed located on the optimal cost-benefit boundary in 
the region of our chosen cost level, thus confirming that 
the insights gained from the individual visualizations 
“add up” when used to compose an entire solution.  

An interesting approach to simultaneous 
visualization of multiple design variables within 
complex system designs is presented in [7]. Their 
approach allows the user to pick several design 
variables at once, and see the values those variables take 
on in design solutions spread through a multi-
dimensional design space. Their approach applies to 
designs whose variables can take on values over 
continuous ranges (e.g., thickness of material). In 
contrast, our approach has been applied to only binary 
choices, where those are choices from among options of 
steps that increase reliability. 

An alternative to visualization is to use some kind of 
analytic method to discern the utility (or otherwise) of 
mitigations. An interesting and apparently very general 
approach to this is the work of Tim Menzies 
(http://tim.menzies.us). His method is able to identify 
for a model which, out of its set of choices, are the ones 
most influential in determining the outcome. It is based 
on random sampling of model inputs, using the model to 
evaluate each set of inputs, and using his machine-
learning based approach to identify significant 
contributors, including both those that it is important to 
include in the solution, and those it is important to 
exclude from the solution. Menzies has applied this 

 
   



approach to, among other things, Boehm’s well known 
COCOMO cost/risk model for software cost and risk 
estimation [8], and the Software Engineering Institute’s 
recommended set of practices included in level 2 of 
their Capability Maturity Model (CMM) for software 
development [9].  We have had some opportunity to try 
his approach on our reliability models, with positive 
results [10]. We are motivated to seek a more direct 
comparison of his analytic approach with our 
visualization method. 
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